1. A light bulb is to be placed at the focus of a parabolic dish as shown in the figure at right. How high above the bottom should the light be placed?
2. Find an equation for the ellipse with foci $(\pm 10,0)$ and vertices $(\pm 11,0)$.

3. Find the vertices, foci, and asymptotes of the hyperbola $144 y^{2}-36 x^{2}=3600$ and sketch a graph illustrating these features.
4. Find an equation for the hyperbola with asymptotes $y= \pm \frac{2}{3} x$ and vertices at
a. $(0, \pm 3)$
b. $(\pm 3,0)$
5. Complete the square to determine whether the equation represents an ellipse, a parabola, or a hyperbola. If the graph is an ellipse, find the center, foci, eccentricity and endpoints of the major and minor axes. If it is a parabola, find the vertex, focus and directrix. If it is a hyperbola, find the center, foci, vertices and asymptotes.
a. $16 x^{2}-96 x+9 y^{2}=0$
b. $36 y^{2}-x^{2}-8 x-52=0$
c. $x^{2}-8 x-32 y-240=0$
6. If the coordinate axes are rotated through an angle of 60°. Find the new coordinates of the point $(3,5)$.
7. Use the discriminant to determine whether $2 y^{2}+5 x y+2 x^{2}=4 x$ describes a parabola, ellipse or hyperbola.
8. Find the angle of rotation of axes to eliminate the $x y$ - term in the following equations. Write the angle in radians and approximate with 4 significant digits.
a. $11 x^{2}-24 x y+4 y^{2}+15=0$
b. $2 \sqrt{3} x^{2}-6 x y+12 y+4 \sqrt{3} x=0$
9. Find parametric equations to describe the hyperbola $4(x-1)^{2}-25(y-4)^{2}=100$
10. Write the equation for the conic section described by $\begin{aligned} & y=1+8 \sin (2 t) \\ & x=9+72 \cos (2 t)\end{aligned}$ in rectangular form.

Math 5 - Trigonometry - Chapter 6 Test Solutions.

1. A light bulb is to be placed at the focus of a parabolic dish as shown in the figure at right. How high above the bottom should the light be placed?
SOLN: If the parabola is opening upwards from a vertex at $(0,0)$, then it has the form $4 \mathrm{p} y=x^{2}$, whence $44 p=64$ and the distance from the focus to the vertex is $p=16 / 11$.

2. Find an equation for the ellipse with foci $(\pm 10,0)$ and vertices $(\pm 11,0)$.

SOLN: $b^{2}=a^{2}-c^{2}=11^{2}-10^{2}=21$ so the equation is $\frac{x^{2}}{100}+\frac{y^{2}}{21}=1$
3. Find the vertices, foci, and asymptotes of the hyperbola $144 y^{2}-36 x^{2}=3600$ and sketch a graph illustrating these features.
SOLN: $144 y^{2}-36 x^{2}=3600 \Leftrightarrow \frac{y^{2}}{25}-\frac{x^{2}}{100}=1$ has vertices at foci at $(0, \pm 5)(0, \pm 5 \sqrt{5})$ The asymptotes are $y= \pm \frac{1}{2} x$
4. Find an equation for the hyperbola with asymptotes $y= \pm \frac{2}{3} x$ and vertices at
a. $(0, \pm 3)$ So we know the ratio of $b / a=2 / 3$ and
 that $b=3$. Thus $a=9 / 2$ and the equation is

$$
\frac{y^{2}}{9}-\frac{4 x^{2}}{81}=1
$$

b. $(\pm 3,0)$ Here $a=3$ so $b=2$ and the equation is simply $\frac{x^{2}}{9}-\frac{x^{2}}{4}=1$
5. Complete the square to determine whether the equation represents an ellipse, a parabola, or a hyperbola. If the graph is an ellipse, find the center, foci, eccentricity and endpoints of the major and minor axes. If it is a parabola, find the vertex, focus and directrix. If it is a hyperbola, find the center, foci, vertices and asymptotes.
a. $16 x^{2}-96 x+9 y^{2}=0 \Leftrightarrow 16\left(x^{2}-6 x+9\right)+9 y^{2}=144 \Leftrightarrow \frac{(x-3)^{2}}{9}+\frac{y^{2}}{16}=1$ is an ellipse with center $(3,0)$, endpoints of minor axes at $(0,0)$ and $(6,0)$ and major axes at $(3,-4)$ and $(3,4)$ with foci at $(3, \pm \sqrt{7})$ and eccentricity $\sqrt{7} / 4$
b. $36 y^{2}-x^{2}-8 x-52=0 \Leftrightarrow 36 y^{2}-(x-4)^{2}=36 \Leftrightarrow y^{2}-\frac{(x-4)^{2}}{36}=1$ is an ellipse with center $(-4,0)$, vetices $(-4,-1)$ and $(-4,1)$, foci at $(-4, \pm \sqrt{37})$ and asymptotes $y= \pm \frac{1}{6}(x-4)$.
c. $x^{2}-8 x-32 y-240=0 \Leftrightarrow 32(y+8)=(x-4)^{2}$ is a parabola with vertex $(4,-8)$, focus at $(4,0)$, directrix along $y=-16$.
6. If the coordinate axes are rotated through an angle of 60°. Find the new coordinates of the point $(3,5)$.
SOLN: $u=\left(\cos 60^{\circ}\right) x+\left(\sin 60^{\circ}\right) y=\frac{3}{2}+\frac{5 \sqrt{3}}{2}, v=-\left(\sin 60^{\circ}\right) x+\left(\cos 60^{\circ}\right) y=\frac{-3 \sqrt{3}}{2}+\frac{5}{2}$
7. Use the discriminant to determine whether $2 y^{2}+5 x y+2 x^{2}=4 x$ describes a parabola, ellipse or hyperbola.
SOLN: $\mathrm{B}^{2}-4 \mathrm{AC}=25-16>0$ so it's a hyperbola.
8. Find the angle of rotation of axes to eliminate the $x y$ - term in the following equations. Write the angle in radians and approximate with 4 significant digits.
a. $11 x^{2}-24 x y+4 y^{2}+15=0$

SOLN: $\phi=\frac{1}{2} \arctan \left(\frac{-24}{11-4}\right)=-\frac{1}{2} \arctan \left(\frac{24}{7}\right) \approx-0.6435$
b. $2 \sqrt{3} x^{2}-6 x y+12 y+4 \sqrt{3} x=0$

SOLN: $\phi=\frac{1}{2} \arctan \left(\frac{-6}{2 \sqrt{3}-12}\right) \approx 0.3063$
9. Find parametric equations to describe the hyperbola $4(x-1)^{2}-25(y-4)^{2}=100$

SOLN: $x=1+5 \sec t$ and $\mathrm{y}=4+4 \operatorname{tant}$
10. Write the equation for the conic section described by $\begin{aligned} & y=1+8 \sin (2 t) \\ & x=9+72 \cos (2 t)\end{aligned}$ in rectangular form. $\frac{(x-9)^{2}}{5184}+\frac{(y-1)^{2}}{64}=1$

